The Origins of Natural Science
GA 326
27 December 1922, Dornach
Lecture IV
In the last lecture, I spoke of a former view of life from which the modern scientific view has evolved. It still combined the qualitative with the form-related or geometrical elements of mathematics, the qualitative with the quantitative. One can therefore look back at a world conception in which the triangle or another geometrical form was an inner experience no matter whether the form referred to the surface of a given body or to its path of movement. Geometrical and arithmetical forms were intensely qualitative inner experiences. For example, a triangle and a square were each conceived as emerging from a specific inward experience.
This conception could change into a different one only when men lost their awareness that everything quantitative—including mathematics—is originally experienced by man in direct connection with the universe. It changed when the point was reached where the quantitative was severed from what man experiences. We can determine this moment of separation precisely. It occurred when all concepts of space that included man himself were replaced by the schematic view of space that is customary today, according to which, from an arbitrary starting point, the three coordinates are drawn. The kind of mathematics prevalent today, by means of which man wants to dominate the so-called phenomena of nature, arose in this form only after it had been separated from the human element. Expressing it more graphically, I would say in a former age man perceived mathematics as something that he experienced within himself together with his god or gods, whereby the god ordered the world. It came as no surprise therefore to discover this mathematical order in the world. In contrast to this, to impose an arbitrary space outline or some other mathematical formula on natural phenomena—even if such abstract mathematical concepts can be identified with significant aspects in these so-called natural phenomena—is a procedure that cannot be firmly related to human experiences. Hence, it cannot be really understood and is at most simply assumed to be a fact. Therefore in reality it cannot be an object of any perception. The most that can be said of such an imposition of mathematics on natural phenomena is that what has first been mathematically thought out is then found to fit the phenomena of nature. But why this is so can no longer be discovered within this particular world perception.
Think back to the other worldview that I have previously described to you, when all corporeality was regarded as image of the spirit. One looking at a body found in it the image of spirit. One then looked back on oneself, on what—in union with one's own divine nature—one experienced as mathematics through one's own bodily constitution. As a work of art is not something obscure but is recognized as the image of the artist's ideas, so one found in corporeal nature the mathematical images of what one had experienced with one's own divine nature. The bodies of external nature were images of the divine spiritual. The instant that mathematics is separated from man and is regarded only as an attribute of bodies that are no longer seen as a reflection of spirit, in that instant agnosticism creeps into knowledge.
Take a concrete example, the first phenomenon that confronts us after the birth of scientific thinking, the Copernican system. It is not my intention today or in any of these lectures to defend either the Ptolemaic or the Copernican system. I am not advocating either one. I am only speaking of the historical fact that the Copernican system has replaced the Ptolemaic. What I say today does not imply that I favor the old Ptolemaic system over the Copernican. But this must be said as a matter of history. Imagine yourself back in the age when man experienced his own orientation in space: above-below, right-left, front-back. He could experience this only in connection with the earth. He could, for example, experience the vertical orientation in himself only in relation to the direction of gravity. He experienced the other two in connection with the four compass points according to which the earth itself is oriented. All this he experienced together with the earth as he felt himself standing firmly on it. He thought of himself not just as a being that begins with the head and ends a the sole of the feet. Rather, he felt himself penetrated by the force of gravity, which had something to do with his being but did not cease at the soles of his feet. Hence, feeling himself within the nature of the gravitational force, man felt himself one with the earth. For his concrete experience, the starting point of his cosmology was thus given by the earth. Therefore he felt he Ptolemaic system to be justified.
Only when man severed himself from mathematics, only then was it possible also to sever mathematics from the earth and to found an astronomical system with its center in the sun. Man had to lose the old experience-within-himself before he could accept a system with its center outside the earth. The rise of the Copernican system is therefore intimately bound up with the transformation of civilized mankind's soul mood. The origin of modern scientific thinking cannot be separated from the general mental and soul condition, but must be viewed in context with it.
It is only natural that statements like this are considered absurd by our contemporaries, who believe in the present world view far more fervently than the sectarians of olden days believed in their dogmas. But to give the scientific mode of thinking its proper value, it must be seen as arising inevitably out of human nature and evolution. In the course of these lectures, we shall see that by doing this we are actually assigning far greater value to science than do the modern agnostics.
Thus the Copernican world conception came into being, the projection of the cosmic center from the earth to the sun. Fundamentally, the whole cosmic thought edifice of Giordano Bruno,32Giordano Bruno: Nola 1548–1600 Rome. Dominican, 1563–1576, a great traveler. Main works developed at the English court at the time of Elizabeth I. After he returned to Italy he was imprisoned because of heretical teachings, and was burned in Rome after 8 years in prison. See Riddles of Philosophy, and The Spiritual Guidance of Man, by Rudolf Steiner. who was born in 1548 and burned at the stake in Rome in 1600, was already contained in the Copernican world view. It is often said that Giordano Bruno glorifies the modern view of nature, glorifies Copernicanism. One must have deep insight into the inner necessity with which this new cosmology arose if one is to have any feeling at all for the manner and tone in which Giordano Bruno speaks and writes. Then one sees that Giordano Bruno does not sound like the followers of the new view or like the stragglers of the old view. He really does not speak about the cosmos mathematically so much as lyrically. There is something musical in the way Giordano Bruno describes the modern conception of nature. Why is that? The reason is that Giordano Bruno, though he was rooted with his whole soul in a bygone world perception, told himself with his outward intellect: The way things have turned out in history, we cannot but accept the Copernican world picture. He understood the absolute necessity that had been brought about by evolution. This Copernican world view, however, was not something he had worked out for himself. It was something given to him, and which he found appropriate for his contemporaries. Belonging as he did to an older world conception, he could not help but experience inwardly what he had to perceive and accept as knowledge. He still had the faculty of inner experience, but he did not have scientific forms for it. Therefore although he described them so wonderfully, he did not follow the Copernican directions of thought in the manner of Copernicus, Galileo, Kepler, or Newton.33Isaac Newton, Sir: Woolsthorpe, Lincolnshire 1642–1727 Kensington, London. Born as a dwarf-like child. Grew up on a farm and went to village and small town schools until 1661. After he was accepted at the University he was of medium talent until his “flaming” as a genius physicist, astronomer, mathematician 1663–1664. Professor in Cambridge 1669–1701, member of the Royal Society London 1662 and from 1703 until his death, its President. Main work: Law of Gravitation, Mathematically Adapted to the Law of Motion from Kepler, developed 1666, published 1687 in Philosophiae Naturalis Principa Mathematica. The idea of an infinitesimal mathematics came from Newton in 1663; three years later he had developed his differential mathematics. His Optics, 1704, put forth the division of light in color as well as emission theory.
Later Newton lost all interest in physics, mathematics, and also in the destiny and consequences of his works. He turned towards chemical and alchemical experiments and studies of their old traditions. In his old age he was interested in religious-speculative studies. Before his death he compared his life with a day, in which a child is playing with sand and mussels and is not aware anymore of the cosmos at his back. Literature: J.W.N. Sullivan, Isaac Newton 1642–1727 (London 1938). Instead, he tried to experience the cosmos in the old way, the way that was suitable when the world cosmos was experienced within one's being. But in order to do this, mathematics would have had to be also mysticism, inward experience, in the way I described yesterday. This it could not be for Giordano Bruno. The time for it was past. Hence, his attempt to enter the new cosmology through living experience became an experience, not of knowledge but of poetry, or at least partially so. This fact lends Giordano's works their special coloring. The atom is still a monad; in his writings, it is still something alive. The sum of cosmic laws retains a soul quality, but not because he experienced the soul in all the smallest details as did the ancient mystics, and not because he experienced the mathematical laws of the cosmos as the intentions of the spirit. No, it was because he roused himself to wonder at this new cosmology and to glorify it poetically in a pseudo-scientific form. Giordano Bruno is truly something like a connecting link between two world conceptions, the present one and the ancient one that lasted into the fifteenth century. Man today can form scarcely any idea of the latter. All cosmic aspects were then still experienced by man, who did not yet differentiate between the subject within himself and the cosmic object outside. The two were still as one; man did not speak of the three dimensions in space, sundered from the orientation within his own body and appearing as above-below, right-left, and forward-backward.
Copernicus tried to grasp astronomy with abstract mathematical ideas. On the other hand, Newton shows mathematics completely on its own. Here I do not mean single mathematical deductions, but mathematical thinking in general, entirely divorced from human experience. This sounds somewhat radical and objections could certainly be made to what I am thus describing in broad outlines, but this does not alter the essential facts. Newton is pretty much the first to approach the phenomena of nature with abstract mathematical thinking. Hence, as a kind of successor to Copernicus, Newton becomes the real founder of modern scientific thinking.
It is interesting to see in Newton's time and in the age that followed how civilized humanity is at pains to come to terms with the immense transformation in soul configuration that occurred as the old mathematical-mystical view gave way to the new mathematical-scientific style. The thinkers of the time find it difficult to come to terms with this revolutionary change. It becomes all the more evident when we look into the details, the specific problems with which some of these people wrestled. See how Newton, for instance, presents his system by trying to relate it to the mathematics that has been severed from man. We find that he postulates time, place, space, and motion. He says in effect in his Principa: I need not define place, time, space, and motion because everybody understands them.34In Newton's second edition of his Philosophiae Naturalis Principa Mathematica of 1713 the definition is “But I do not define, because it is well known to all of us.” Everybody knows what time is, what space, place, and motion are, hence these concepts, taken from common experience, can be used in my mathematical explanation of the universe. People are not always fully conscious of what they say. In life, it actually happens seldom that a person fully penetrates everything he says with his consciousness. This is true even among the greatest thinkers. Thus Newton really does not know why he takes place, time, space, and motion as his starting points and feels no need to explain or define them, whereas in all subsequent deductions he is at pains to explain and define everything. Why does he do this? The reasons is that in regard to place, time, motion, and space all cleverness and thinking avail us nothing. No matter how much we think about these concepts, we grow no wiser than we were to begin with. Their nature is such that we experience them simply through our common human nature and must take them as they come. A successor of Newton's, Bishop Berkeley,35George Berkeley: Desert Castle, Thomastown, Ireland 1685–1753 Oxford. English philosopher and Anglican missionary, Bishop from 1734. Main works: Treatise Concerning the Principle of Human Knowledge, 1710; Alciphron, about ethics and free thinkers, 1732; Siris, concerning metaphysical questions. See: Riddles of Philosophy.
Berkeley said: “One has to do it in such a way”: e.g., as in Paragraph 113 of Principles of Human Knowledge. In the writing De Motu (From Motion) is written in Paragraph 43: “Motion, even though perceived clearly by the senses, was darkened, but not because of its own being, but far more through commentaries by learned philosophers.” took particular notice of this point. He was involved in philosophy more than Newton was, but Berkeley illustrates the conflicts taking place during the emergence of scientific thinking. In other respects, as we shall presently hear, he was not satisfied with Newton, but he was especially struck by the way that Newton took these concepts as his basis without any explanation, that he merely said: I start out from place, time, space, and motion; I do not define them; I take them as premises for my mathematical and scientific reflections. Berkeley agrees that one must do this. One must take these concepts in the way they are understood by the simplest person, because there they are always clear. They become unclear not in outward experience, but in the heads of metaphysicians and philosophers. Berkeley feels that when these four concepts are found in life, they are clear; but they are always obscure when found in the heads of thinkers.
It is indeed true that all thinking about these concepts is of no avail. One feels this. Therefore, Newton is only beginning to juggle mathematically when he uses these concepts to explain the world. He is juggling with ideas. This is not meant in a derogatory way; I only want to describe Newton's abilities in a telling manner. One of the concepts thus utilized by Newton is that of space. He manipulates the idea of space as perceived by the man in the street. Still, a vestige of living experience is contained therein. If, on the other hand, one pictures space in terms of Cartesian mathematics, without harboring any illusions, it makes one's brain reel. There is something undefinable about this space, with its arbitrary center of coordinates. One can, for example, speculate brilliantly (and fruitlessly) about whether Descartes’ space if finite or infinite. Ordinary awareness of space that is still connected with the human element really is not at all concerned with finiteness or infinity. It is after all quite without interest to a living world conception whether space can be pictured as finite or infinite. Therefore one can say that Newton takes the trivial idea of space just as he finds it, but then he begins to mathematize. But, due to the particular quality of thinking in his age, he already has the abstracted mathematics and geometry, and therefore he penetrates spatial phenomena and processes of nature with abstract mathematics. Thereby he sunders the natural phenomena from man. In fact, in Newton's physics we meet for the first time ideas of nature that have been completely divorced from man. Nowhere in earlier times were conceptions of nature so torn away from man as they are in Newtonian physics.
Going back to a thinker of the fourth or fifth century A.D.—though people of that period can hardly be called “thinkers,” because their inner life was far more alive than the mere life in thoughts—we would find that he held the view: “I live; I experience space along with my God, and orient myself in space up-and-down, right-left, and forward-backward, but I dwell in space together with my God. He outlines the directions and I experience them.” So it was for a thinker of the third or fourth century A.D. and even later; indeed, it only became different in the fourteenth century. Thinking geometrically about space, man did not merely draw a triangle but was conscious of the fact that, while he did this, God dwelled within him and drew along with him. His experience was qualitative; he drew the qualitative reality that God Himself had placed within him. Everywhere in the outer world, whenever mathematics was observed, the intentions of God were also observed.
By Newton's time mathematics has become abstracted. Man has forgotten that originally he received mathematics as an inspiration from God. And in this utterly abstract form, Newton now applies mathematics to the study of space. As he writes his Principia, he simply applies this abstracted mathematics, this idea of space (which he does not define,) because he has a dim feeling that nothing will be gained by trying to define it. He takes the trivial idea of space and applies his abstract mathematics to it, thus severing it from any inward experiences. This is how he speaks of the principles of nature.
Later on, interestingly enough, Newton goes somewhat deeper. This is easy to see if one is familiar with his works. Newton becomes ill at ease, as it were, when he contemplates his own view of space. He is not quite comfortable with this space, torn as it is out of man and estranged completely from the spirit. So he defines it after all, saying that space is the sensorium of God. It is most interesting that at the starting point of modern science the very person who was the first to completely mathematize and separate space from man, eventually defines space as God's sensorium,36In the work Optice by Newton, which is the Latin translation of his Optics (1704), published by Samuel Clarke in 1706 and approved with additions made by Newton, the formula appears only at the end of the book at the so-called 28th Problem: “If these questions are answered in the right way, could we then not ascertain the phenomenon that there is a being, unbodily, intelligent, which can perceive the endless universe as it were with its sense organs, and which seems to look into the innermost and is surrounding it with its all-embracing presence, while that in us that is usually feeling and thinking are only handed-down pictures in which we then perceive and observe our organs?” This thought seems not only to be Newton's, but was also presented in a similar way by Henry More, the Platonist from Cambridge who was a friend of Newton. a sort of brain or sense organ of God. Newton had torn nature asunder into space and man-who-experiences-space. Having done this, he feels inwardly uneasy when he views this abstract space, which man had formerly experienced in union with his god. Formerly, man had said to himself: What my human sensorium experiences in space, I experience together with my god. Newton becomes uneasy, now that he has torn space away form the human sensorium. He has thereby torn himself away from his permeation with the divine-spiritual. Space, with all is mathematics, was not something external. So, in later life, Newton addresses it as God's sensorium, though to begin with he had torn the whole apart, thus leaving space devoid of Spirit and God. But enough feeling remained in Newton that he could not leave this externalized space devoid of God. So he deified it again.
Scientifically, man tore himself loose from his god, and thus from the spirit; but outwardly he again postulated the same spirit. What happened here explains why a man like Goethe found it impossible37For his polemic concerning Newton's color theory, see Rudolf Steiner, Goethe the Scientist (New York: Anthroposophic Press, 1950), especially the Introduction, “Goethe, Newton and the Physicists”; see also the forthcoming book, Heinrich O. Proskauer, The Rediscovery of Color (Spring Valley, NY: Anthroposophic Press). to go along with Newton on any point. Goethe's Theory of Color is one particularly characteristic point. This whole procedure of first casting out the spirit, separating it from man, was foreign to Goethe's nature. Goethe always had the feeling that man has to experience everything, even what is related to the cosmos. Even in regard to the three dimensions Goethe felt that the cosmos was only a continuation of what man had inwardly experienced. Therefore Goethe was by nature Newton's adversary.
Now let us return to Berkeley, who was somewhat younger than Newton, but still belonged to the period of conflict that accompanied the rise of the scientific way of thinking. Berkeley had no quarrel with Newton's accepting the trivial ideas of place, space, time, and motion. But he was not happy with this whole science that was emerging, and particularly not with its interpretations of natural phenomena. It was evident to him that when nature is utterly severed from man it cannot be experienced at all, and that man is deceiving himself when he imagines that he is experiencing it.
Therefore, Berkeley declared that bodies forming the external basis for sense perceptions do not really exist. Reality is spiritual through and through. The universe, as it appears to us—even where it appears in a bodily form—is but the manifestation of an all-pervading spirit. In Berkeley, these ideas appear pretty much as mere assertions, for he no longer had any trace of the old mysticism and even less of the ancient pneumatology. Except for his religious dogma, he really had no ground at all for his assertion of such all-pervading spirituality. But assert it he did, and so vigorously that all corporeality become for him no more than a revelation of the spirit. Hence it was impossible for Berkeley to say: I behold a color and there is vibrating movement back of it that I cannot see—which is what modern science justifiably states. Instead, Berkeley said: I cannot hypothetically assume that there is anything possessing any corporeal property such as vibratory movement. The basis of the physical world of phenomena must be spiritually conceived. Something spiritual is behind a color perception as its cause, which I experience in myself when I know myself as spirit. Thus Berkeley is a spiritualist in the sense in which this term is used in German philosophy.
For dogmatic reasons, but with a certain justification, Berkeley makes innumerable objections against the assumption that nature can be comprehended by mathematics that has been abstracted from direct experience. Since to Berkeley the whole cosmos was spiritual, he also viewed mathematics as having been formed together with the spirit of the cosmos. He held that we do in fact experience the intentions of the cosmic spirit insofar as they have mathematical forms, for that we cannot apply mathematical concepts in an external manner to corporeal objects.
In accordance with this point of view, Berkeley opposed what mathematics had become for both Newton and Leibnitz,38Leibnitz: Leipzig 1646–1716 Hanover. Philologist, mathematician, physicist, lawyer, statesman, priest. Mostly living at princely courts, traveling a lot. Discoverer of the Infinitesimal Calculus 1686, independently of Newton. namely differential and integral calculus. Please, do not misunderstand me. Today's lecture must be fashioned in such a way that it cannot but provoke many objections in one who holds to the views prevailing today. But these objections will fade away during the ensuring lectures, if one is willing to keep an open mind. Today, however, I want to present the themes that will occupy us in a rather radical form.
Berkeley became an opponent of the whole infinitesimal calculus39In his writing The Analyst (The Analyst, 1734, included in the book Writings about the Origin of Mathematics and Physics) the Table of Contents is in the form of 50 theses. No. 7, for example, is as follows: “Objections against the Secrets of Belief Which are Made Unfairly by Those who Admit Them in Science;” or No. 13: “The Rule for the Flux of Potency is Achieved through Unfair Reasoning;” and No. 22: “With the Help of a Double Mistake Analysts Come to their Truth, but not to Science, in which They do not even Know How They Came to Their Own Conclusions.” From the Polemic Dispute, which follows The Analyst, an example is: “No big name on this earth will ever cause me to take unclear things for clear ones. They think of one as if it were a crime to think one could see further than Sir Isaac Newton, even above him. I am convinced though that they speak for the feelings of many others. But there are also some ... who think and feel it unfair to copy some great man's shortcomings, and who see no crime in wanting to see further than Sir Isaac Newton, but further than the whole of mankind.” to the extent that it was then known. He opposed what was beyond experience. In this regard, Berkeley's feeling for things was often more sensitive than his thoughts. He felt how, to the quantities that the mind could conceive, the emergence of infinitesimal calculus added other quantities; namely, the differentials, which attain definition only in the differential coefficient. Differentials must be conceived in such a way that they always elude our thinking, as it were. Our thinking refuses to completely permeate them. Berkeley regarded this as a loss of reality, since knowledge for him was only what could be experienced. Therefore he could not approve of mathematical ideas that produced the indetermination of the differentials.
What are we really doing when we seek differential equations for natural phenomena? We are pointing to something that eludes our possible experience. I realize, of course, that many of you cannot quite follow me on these points, but I cannot here expound the whole nature of infinitesimal calculus. I only want to draw attention to some aspects that will contribute to our study of the birth of modern science.
Modern science set out to master the natural phenomena by means of a mathematics detached from man, a mathematics no longer inwardly experienced. By adopting this abstract mathematical view and these concepts divorced from man, science arrived at a point where it could examine only the inanimate. Having taken mathematics out of the sphere of live experience, one can only apply it to what is dead. Therefore, owing to this mathematical approach, modern science is directed exclusively to the sphere of death. In the universe, death manifests itself in disintegration, in atomization, in reduction to microscopic parts—putting it simply, in a crumbling into dust. This is the direction taken by the present-day scientific attitude. With a mathematics detached from all living experience, it takes hold of everything in the cosmos that turns to dust, that atomizes. From this moment onward it becomes possible to dissipate mathematics itself into differentials. We actually kill all living forms of thought, if we try to penetrate them with any kind of differential equation, with any differential line of thought. To differentiate is to kill; to integrate is to piece the dead together again in some kind of framework, to fit the differentials together again into a whole. But they do not thereby become alive again, after having been annihilated. One ends up with dead specters, not with anything living.
This is how the whole perspective of what was opening up through infinitesimal calculus appeared to Berkeley. Had he expressed himself concretely, he might well have said: First you kill the whole world by differentiating it; then you fit its differentials together again in integrals, but you no longer have a world, only a copy, an illusion. With regard to its content, every integral is really an illusion, and Berkeley already felt this to be so. Therefore, differentiation really implies annihilation, while integration is the gathering up of bones and dust, so that the earlier forms of the slain beings can be pieced together again. But this does not bring them back to life; they remain no more than dead replicas.
One can say that Berkeley's sentiments were untimely. This they certainly were, for the new way of approach had to come. Anyone who would have said that infinitesimal calculus should never have been developed would have been called not a scientific thinker but a fool. On the other hand, one must realize that at the outset of this whole stream of development, feelings such as Berkeley's were understandable. He shuddered at what he thought would come from a infinitesimal study of nature and had to do with the process of birth but a study of all dying aspects in nature.
Formerly this had not been observed, nor had there been any interest in it. In earlier times, the coming-into-being, the germinating, had been studied; now, one looked at all that was fading and crumbling into dust. Man's conception was heading toward atomism, whereas previously it had tended toward the continuous, lasting aspects of things. Since life cannot exist without death and all living things must die, we must look at and understand all that is dead in the world. A science of the inanimate, the dead, had to arise. It was absolutely necessary. The time that we are speaking about was the age in which mankind was ready for such a science. But we must visualize how this went against the grain of somebody who, like Berkeley, still lived completely in the old view.
The after-effects of what came into being then are still very much with us today. We have witnessed the triumphs of just those scientific labors that made Berkeley shudder. Until they were somewhat modified through the modern theory of relativity,40Prepared by Mach and Lorentz, developed by Einstein, Special Theory of Relativity 1905, Common Theory of Relativity 1916. Made it necessary to revise Newton's Mechanics with the help of non-Euclidean Geometry. See also Riddles of Philosophy and Georg Unger, Von Bidden, Physicalischer Begriffe, Part 3 (Stuttgart: 1967), pages 100–122. Newton's theories reigned supreme, Goethe's revolt against them made no impression. For a true comprehension of what went on we must go back to Newton's time and see the shuddering of thinkers who still had a vivid recollection of earlier views and how they clung to feelings that resembled the former ones.
Giordano Bruno shrank from studying the dead nature that was now to be the object of study. He could not view it as dead in a purely mathematical manner of thought, so he animated the atoms into monads and imbued his mathematical thinking with poetry in order to retain it in a personal sphere. Newton at first proceeded from a purely mathematical standpoint, but then he wavered and defined space (which he has first completely divorced from man through his external mathematics) as God's sensorium. Berkeley in his turn rejected the new direction of thinking altogether and with it the whole trend towards the infinitesimal.
Today, however, we are surrounded and overwhelmed by the world view that Giordano Bruno tried to turn into poetry, that Newton felt uncomfortable about, and that Berkeley completely rejected. Do we take what Newton said—that space is a sensorium of God—seriously when we think in the accepted scientific sense today? People today like to regard as great thinkers those men who have said something or other that they approve. But if the great men also said something that they do not approve, they feel very superior and think: Unfortunately, on this point he wasn’t as enlightened as I am. Thus many people consider Lessing41Lessing, Gottfried Ephraim: Kamenz/Lausitz 1729–1781 Brunswick. Dramatist, essayist, critic. Opens a new epoch in German literature and an. His last writing, “The Education of the Human Race,” (1780) finds it necessary to postulate reincarnation for the sake of the development of the human race. See Riddles of Philosophy. a man of great genius but make an exception for what he did toward the end of his life, when he became convinced that we go through repeated earth lives.
Just because we must in the present age come to terms with the ideas that have arisen, we must go back to their origin. Since mathematics has once and for all been detached from man, and since nature has been taken hold of by this abstract mathematics that has gradually isolated us from the whole of nature, we must now somehow manage to find ourselves in this nature. For we will not attain a coherent spiritual knowledge until we once again have found the spirit in nature.
Just as it is a matter of course that every living man will sooner or later die, so it was a matter of course that sooner or later in the course of time a conception of death had to emerge from the former life-imbued world view. Things that can only be learned from a corpse cannot be learned by a person who is unwilling to examine the corpse. Therefore certain mysteries of the world can be comprehended only if the modern scientific way of thinking is taken seriously.
Let me close with a somewhat personal remark.42The reason was a controversy in the magazine Die Drei of 1921–1922, pages 1107 and 1114, as well as in the following years publication (see pages 172–330 about the reality of atoms). See Rudolf Steiner's First Scientific Lecture Course: Light Course (Forest Row, England: Steiner Schools Fellowship, 1977). The scientific world view must be taken seriously, and for this reason I was never an opponent of it; on the contrary, I regarded it as something that of necessity belongs to our time. Often I had to speak out against something that a scientist, or so-called scientist, had made of the things that were discovered by unprejudiced investigation of the sphere of death. It was the misinterpretation of such scientific discoveries that I opposed. On this occasion let me state emphatically that I do not wish to be regarded as in any way an opponent of the scientific approach. I would consider it detrimental to all our anthroposophical endeavors if a false opposition were to arise between what anthroposophy seeks by way of spiritual research and what science seeks—and must of necessity seek in its field—out of the modern attitude.
I say this expressly, my dear friends, because a healthy discussion concerning the relationship between anthroposophy and science must come to pass within our movement. Anything that goes wrong in this respect can only do grave harm to anthroposophy and should be avoided.
I mention this here because recently, in preparing these lectures, I read in the anthroposophical periodical Die Drei that atomism was being studied in a way in which no progress can be made. Therefore, I want to make it clear that I consider all these polemics in Die Drei about atomism as something that only serves to stultify the relations between anthroposophy and science.
Vierter Vortrag
Gestern versuchte ich zu zeigen, wie eine ältere menschliche Anschauung, aus der dann die moderne naturwissenschaftliche Anschauung erst hervorgegangen ist, noch verband das Qualitative und, ich möchte sagen, auch das Figurale der Mathematik, auch der Mathematik, insofern sie Geometrie ist, wie sie also noch verband das Quantitative mit dem Qualitativen. So daß man zurückblicken kann in eine Weltanschauung, in der Erlebnis nicht nur war, sagen wir, ein Dreieck oder irgendein anderes geometrisches Gebilde, gleichgültig ob man mit diesem geometrischen Gebilde eine Körperbegrenzung meint oder ob man etwa die Gestalt der Bewegungsbahn eines Körpers meint, sondern welche ein solches geometrisches Gebilde und auch ein arithmetisches Gebilde noch im innigen Zusammenhange sah mit etwas auch intensiv qualitativ Erlebtem, zum Beispiel ein Dreieck hervorgehend aus einem bestimmten Erlebnis, ein Viereck hervorgehend aus einem bestimmten Erlebnis.
Diese Anschauung konnte erst in eine andere sich verwandeln, als man das Bewußtsein verlor, daß alles Quantitative, also auch alles Mathematische, ursprünglich dennoch von dem Menschen unmittelbar im Zusammenhange mit der Welt erlebt ist, als man dazu gekommen war, abzulösen dieses Quantitative von dem menschlich Erlebten. Und wir können ja geradezu streng diese Ablösung feststellen da, wo ersetzt wird jede Raumauffassung als etwas, in dem der Mensch selber drinnensteht, durch die heute übliche schematische Raumauffassung, wo man den Ausgangspunkt nimmt eben von einem beliebigen Orte aus, durch den man einfach die drei Koordinatenachsen zieht. Das Mathematische in der Form, wie man es heute hat und wie man durch es die sogenannten Naturerscheinungen beherrschen will, es entstand erst in dieser Form, nachdem man es vom Menschlichen abgelöst hatte. Wenn ich mich etwas anschaulicher ausdrücken wollte, so müßte ich sagen: In einer älteren Zeit empfand der Mensch das Mathematische als etwas, was er in sich selber mit seinen Göttern oder mit seinem Gotte zusammen erlebte, wodurch der Gott die Welt ordnete, und gegenüber dem man es als kein Wunder anzusehen braucht, daß man die Welt nun auch in dieser Ordnung findet. Dagegen ist das Beziehen eines ganz willkürlichen Raumschemas oder eines anderen Mathematischen auf Naturerscheinungen, trotzdem man es mit Wesentlichem in diesen sogenannten Naturerscheinungen identifizieren kann, es ist dieses Beziehen des Abstrakt-Mathematischen auf Naturerscheinungen etwas, das nicht in irgendwie fester Weise sich mit menschlichen Erlebnissen verbinden kann und daher auch im Grunde genommen nicht durchschaut werden, sondern höchstens konstatiert werden kann. Daher kann es auch in Wirklichkeit nicht Gegenstand eines Erkennens sein. Man kann eigentlich von dieser Anwendung der Mathematik auf die Naturerscheinungen immer nur sagen, man findet, daß dasjenige, das man erst mathematisch ausgedacht hat, dann auf die Naturerscheinungen paßt. Aber warum das so ist, kann man innerhalb dieser Anschauungswelt nicht mehr finden.
Denken wir zurück an jene Anschauungswelt, von der ich Ihnen in diesen Tagen gesprochen habe, wo alles Körperliche galt als eine Abbildung des Geistigen. Da schaute man auf den Körper, fand in dem Körper ein Abbild des Geistigen. Man schaute dann zurück auf sich selbst, auf das, was man im Verein mit seinem Göttlichen als Mathematisches durch seine eigene Körperkonstitution findet. Und genau ebenso, wie man in dem Kunstwerk eines Künstlers den Abdruck seiner Ideen findet, ohne daß man dabei etwas nicht Durchschaubares hätte, so findet man in den Körpern die mathematischen Abbilder desjenigen, was man erlebt hat mit seinem Göttlichen zusammen, weil diese Körper draußen in der Natur ja selbst die Abbilder des Göttlich-Geistigen sind. So ist also schon in demselben Momente, wo die Mathematik abgesondert wird von dem Menschen und dann doch auf eine Körperlichkeit bezogen wird, die einem nicht mehr ein Abbild des Geistes ist, etwas Agnostisches in die ganze Auffassung notwendigerweise hineingekommen.
Betrachten wir die Sache an etwas Konkretem, an der ersten Erscheinung, welche uns entgegentritt nach der Geburt der naturwissenschaftlichen Denkweise, betrachten wir die Sache an dem kopernikanischen System. Ich habe es heute und überhaupt in diesen Vorträgen nicht zu tun mit der Verteidigung des alten ptolemäischen Systems oder der Verteidigung des kopernikanischen Systems. Ich trete hier zunächst, indem ich nur historisch darstelle, weder für das eine noch das andere ein, habe es nur zu tun mit der Tatsache, daß das kopernikanische System das ptolemäische abgelöst hat. Es sollte also niemand etwa aus demjenigen, was ich heute zu sagen habe, schließen, daß ich für das alte ptolemäische System eintreten wollte gegen das kopernikanische. Aber in bezug auf das geschichtliche Werden ist folgendes zu sagen. Man versetze sich zurück in diejenige Zeit, in welcher der Mensch seine eigene Orientierung im Raum, das ObenUnten, Rechts-Links, Vorne-Hinten, erlebte. Er konnte sie nur erleben im Zusammenhange mit der Erde. Er konnte zum Beispiel das Oben und Unten an sich selber nur erleben im Zusammenhange mit der Schwerkraftrichtung. Und er erlebte das Rechts-Links, das VorneHinten im Zusammenhange mit den Weltgegenden, nach denen ja die Erde selber orientiert ist. Aber er erlebte auch diese Orientierung mit der Erde zusammen, indem er sich fest auf der Erde stehend fühlte. Das heißt, der Mensch war sich nicht nur für seine Gedanken irgend etwas, was bei seinem Kopfe anfängt und bei seinen Fußsohlen aufhört, sondern der Mensch erlebte sich vielmehr als etwas, durch das die Schwerkraft geht, die mit seinem Wesen etwas zu tun hat, die aber nicht bei den Schuhsohlen aufhört, so daß er, indem er sich in dem Schwerkraftwesen drinnen fühlte, sich als zusammengehörig mit der Erde empfand. Dadurch war für sein konkretes Erleben der Ausgangspunkt seiner ganzen kosmischen Betrachtung durch die Erde gegeben. Damit war aber für ihn die Konstruktion des ptolemäischen Weltsystems berechtigt. In dem Augenblicke, wo der Mensch die mathematische Konstruktion von sich selber loslöste, da war erst die Möglichkeit gegeben, sie auch von der Erde loszulösen und ein astronomisches System zu begründen, das seinen Mittelpunkt in der Sonne hat. Der Mensch mußte erst das ältere In-sich-Erleben verlieren, um außerhalb des Irdischen den Mittelpunkt eines Systems anzunehmen. Es hängt also das Heraufkommen des kopernikanischen Systems auf das innigste zusammen mit der ganzen Umwandlung in der Seelenstimmung der zivilisierten Menschheit. Es kann gar nicht die Entstehung des modernen naturwissenschaftlichen Denkens herausgerissen werden aus der übrigen Gemüts- und Seelenverfassung der Menschen, sondern muß im Zusammenhange damit betrachtet werden.
Es ist ja ganz natürlich, daß wenn man solche Dinge ausspricht, sie zunächst den Zeitgenossen, die an die gegenwärtige Naturanschauung glauben, mit einer viel größeren Intensität als jemals alte Religionsbekenner an ihre Dogmen geglaubt haben, daß sie ihnen absurd erscheinen. Aber man muß, um eben die naturwissenschaftliche Denkweise richtig würdigen zu können - sie wird dadurch gerade, wie wir sehen werden im Verlaufe dieser Vorträge, wertvoller für die Erkenntnis der Welt, als sie den Agnostikern gilt -, man muß sie aus der Gesamtheit der menschlichen Seelenverfassung und der Entwickelung derselben herausholen.
Es war also einmal gegeben diese kopernikanische Weltanschauung, dieses Hinausverlegen des kosmischen Mittelpunktes vom Irdischen in die Sonne. Und damit war eigentlich im Grunde schon gegeben das ganze kosmische Gedankengebäude des Giordano Bruno, der 1548 geboren ist, 1600 in Rom verbrannt wurde. Giordano Bruno erscheint, man möchte sagen, geradezu wie der die moderne Naturanschauung, den Kopernikanismus Glorifizierende. Man muß ganz durchdrungen sein von der Einsicht in die Notwendigkeit der Entstehung dieses Weltenbildes, um überhaupt etwas zu empfinden von der ganzen Art und Weise, und namentlich für die Diktion, den Ton, wie Giordano Bruno spricht und schreibt. Man muß es doch bemerken, daß Giordano Bruno in seinen Schriften ganz anders redet als irgendwie sowohl die Anhänger der neuen, wie die Nachzügler der alten, bisher gebräuchlichen naturwissenschaftlichen Darstellungsweise. Man möchte sagen, Giordano Bruno redet eigentlich gar nicht mathematisch, er redet eher lyrisch über das Weltenall. Man möchte etwas Musikalisches finden in der Art und Weise, wie oftmals hinreißend Giordano Bruno die moderne Naturanschauungsweise in Worte kleidet. Warum ist das? Das ist aus dem Grunde, weil Giordano Bruno in der Tat eigentlich mit seinem ganzen inneren Wesen in einer älteren Weltempfindung wurzelt und sich mit seinem äußeren Verstande sagt: So wie die Dinge nun einmal in der Menschheitsentwickelung geworden sind, können wir gar nicht anders, als das kopernikanische Weltanschauungsbild akzeptieren. Er verstand eben die Notwendigkeit, die durch die Zeitentwickelung für die Menschheit gegeben war. Aber, ich möchte sagen, an ihn trat dieses kopernikanische Weltbild eigentlich nicht heran als ein Selbsterarbeitetes, sondern als etwas, was ihm gegeben war, was er fand als das den Zeitgenossen Angemessene. Er konnte aber nicht anders, weil er eben mit seinem Inneren einer älteren Weltempfindung angehörte, als dasjenige, was er erkennen sollte, was er als Erkenntnis akzeptieren sollte, innerlich zu erleben. Er hatte noch das innerliche Erleben. Wissenschaftliche Formen dieses innerlichen Erlebens hatte er noch nicht. Und so verfolgt er eigentlich die Gedankengänge des kopernikanischen Systems, die er so wunderbar darstellt, nicht so, wie sie Kopernikus, wie sie etwa Galilei oder Kepler oder andere verfolgt haben, oder gar Newton, sondern er verfolgte sie so, daß er versuchte, ganz nach alter Art, wo man den ganzen Kosmos in sich selber miterlebt hat, das nun auch mitzuerleben. Aber um in der alten Weise den Kosmos mitzuerleben, mußte die Mathematik zugleich Mystik sein, wie ich gestern darstellte, mußte zugleich innerliches Erlebnis sein. Das konnte sie für Giordano Bruno nicht. Dafür war die Zeit vorüber. Und so wurde das Miterleben nicht eigentlich ein wissendes Miterleben, es wurde ein poetisches Miterleben oder wenigstens ein halb poetisches Miterleben. Das gibt den Giordanoschen Schriften ihre Diktion. Der Atomismus ist noch eine Monadologie, das Atom ist noch etwas Lebendes bei ihm. Die Summe der kosmischen Gesetze hat noch etwas Seelenhaftes, aber nicht, weil er im Sinne eines alten Mystikers das Seelenhafte bis hinein ins Kleinste wirklich menschlich miterlebt hätte oder die mathematische Gesetzmäßigkeit des Kosmos als die Intention des Geistes miterlebt hätte, sondern weil er sich poetisch aufraffte, um dasjenige, was einmal, weil es äußerlich geworden war, auch nur äußerlich gegeben werden konnte, um das zu bewundern und in Bewunderung wissenschaftsähnlich zu glorifizieren. Es ist wirklich in dieser Persönlichkeit des Giordano Bruno etwas wie ein Eckpfeiler der beiden Weltanschauungen, der gegenwärtigen und derjenigen, von der sich der Mensch heute kaum noch einen Begriff macht, die bis ins 15. Jahrhundert hineingeht und in der noch in einer gewissen Weise alles dasjenige vom Menschen miterlebt wird, was kosmisch ist, so daß der Mensch noch nicht einen Unterschied hat zwischen dem Subjekt in ihm und dem kosmischen Objekt draußen, daß beide eigentlich noch zusammenkommen, daß der Mensch noch nicht redet von den drei Raumdimensionen, abgesondert von seiner eigenen Orientierung im eigenen Leibe nach oben-unten, rechts-links, vorne-hinten.
Bei Kopernikus war es zunächst das Astronomische, das er nun mit dem abgesondert gedachten Mathematischen zu erfassen versucht. Bei Newton tritt die Mathematik — ich meine jetzt nicht einzelne mathematische Ableitungen, sondern das mathematische Denken überhaupt, aber in Absonderung von dem menschlichen Erleben — nun ganz für sich auf. Newton ist eigentlich — gewiß, man muß in der Hauptsache immer an radikalen Punkten schildern, es kann manches eingewendet werden gegen dasjenige, was ich sozusagen in den Eckpunkten schildere, aber das tut nichts zur Sache -, Newton ist so ziemlich der erste, der mit der abgesonderten mathematischen Denkweise an die Naturerscheinungen betrachtend herantritt. Und dadurch wird Newton, als eine Art Nachfolger des Kopernikus, der eigentliche Gründer der modernen naturwissenschaftlichen Denkweise.
Nun ist es interessant, wie in dieser Newtonschen Zeit und in der Zeit, die darauf folgt, die zivilisierte Menschheit damit beschäftigt ist, zurechtzukommen mit dem ungeheuren Umschwung, der sich in der Seelenverfassung von der älteren mathematisch-mystischen Anschauungsweise zu der neueren mathematisch-naturwissenschaftlichen Anschauungsweise vollzog. Die Geister können eigentlich schwer fertig werden mit diesem gewaltigen Umschwung. Besonders klar wird einem das, wenn man so in die Einzelheiten hineinschaut, in die Aufgaben, mit denen die eine oder die andere Persönlichkeit kämpft. Nehmen wir einmal Newton, wie er darstellt sein Natursystem dadurch, daß er es in Beziehung zu bringen sucht mit der vom Menschen abgesonderten Mathematik, so finden wir, daß er voraussetzt zum Beispiel Zeit, Ort, Raum, Bewegung. Er sagt in seinen Prinzipien der Naturphilosophie: Ort, Zeit, Raum, Bewegung brauche ich nicht zu erklären, denn die kennt eigentlich jeder Mensch. Jeder Mensch weiß, was Zeit ist, was Raum ist, was Ort ist, was Bewegung ist, und so verwende ich innerhalb der mathematischen Welterklärung eben so, wie ich sie aufgreife aus der trivial-populären Anschauungsweise, die Begriffe des Raumes, der Zeit, des Ortes, der Bewegung. Nicht immer ist es so, daß die Menschen mit ihrem Bewußtsein voll das umfassen, was sie aussprechen. Es ist sogar im Leben höchst selten, daß ein Mensch wirklich mit seinem Bewußtsein in all dasjenige eindringt, was er ausspricht. Auch bei den größten Geistern ist das nicht der Fall. Und Newton weiß im Grunde genommen nicht, warum er zu Ausgangspunkten nimmt Ort, Zeit, Raum, Bewegungen und sie nicht irgendwie erklärt, nicht irgendwie definiert, während er bei allen folgenden Ableitungen durchaus darauf sieht, alles zu erklären, alles zu definieren. Warum ist das? Nun, das ist aus dem Grunde, weil einem gegenüber Ort, Zeit, Bewegung, Raum alle Gescheitheit und alles Denken nichts hilft. Man wird nämlich durch alles Denken über Ort, Zeit, Raum, Bewegung niemals gescheiter als man vom Anfange an ist, wo man im gewöhnlichen Erleben eben diese Begriffe, diese Vorstellungen aufnimmt. Die Vorstellungen sind eben so, daß man sie durch seine unmittelbare, ich möchte sagen, triviale Menschlichkeit erlebt und so behalten muß, wie man sie so hat. Einem Nachfolger Newtons, der allerdings mehr auf philosophischem Gebiete tätig war, aber der gerade außerordentlich charakteristisch ist für die Kämpfe während der Entstehung der naturwissenschaftlichen Denkweise, einem der Nachfolger Newtons, Berkeley, ist das ganz besonders aufgefallen. Er ist sonst nicht zufrieden mit Newton, davon werden wir noch hören, aber das ist ihm besonders aufgefallen, daß Newton diese Begriffe zugrundelegt, ohne sie zu erklären, daß er sagt: Ich gehe aus von Ort, Zeit, Raum, Bewegung, definiere diese nicht, sondern lege sie meinen mathematisch-naturwissenschaftlichen Betrachtungen zugrunde. Berkeley sagte: Das muß man so machen. Man muß diese Begriffe nehmen, wie sie der einfachste Mensch hat, denn da sind sie immer klar. Unklar werden nämlich die Begriffe von Ort, Zeit, Bewegung und Raum nicht draußen im Erleben, sondern unklar werden sie in den Köpfen der Metaphysiker und Philosophen. Findet man diese vier Begriffe im Leben, so sind sie klar — so meint Berkeley -, findet man sie in den Köpfen der Metaphysiker und Philosophen, so sind sie immer unklar.
Und es ist schon so, daß das Nachdenken über diese Begriffe, die eben erlebt sein wollen, nichts hilft. Das spüre man doch. Deshalb beginnt Newton erst dann mathematisch zu jonglieren, wenn er diese Begriffe für die Welterklärungen braucht. Da jongliert er dann mit diesen Begriffen. Ich will damit gar nichts Abträgliches sagen, sondern will nur, sagen wir, das lebendige Können des Newton charakterisieren. Einer von diesen Begriffen, den Newton so verwendet, ist der Raum. Er manipuliert wirklich mit dem Raum zunächst so, wie der — nun, brauchen wir den philiströsen Ausdruck — gemeine Mann den Raum eben sich vorstellt. Und dadrinnen liegt noch immer etwas von dem Erlebten. Denn, den Raum der Cartesiusschen Mathematik sich vorzustellen, das bringt einen nämlich, wenn man sich nicht selber Illusionen vormacht, mit dem Denken in eine Art von Wirbel hinein, in eine Art von Drehkrankheit, denn dieser Raum, der beliebig irgendwo seinen Mittelpunkt hat, seinen Koordinaten-Anfangspunkt, dieser Raum, der hat etwas so Unbestimmtes. Man kann zum Beispiel in der geistreichsten Weise, ohne daß dabei irgend etwas herauskommt, darüber spekulieren, ob dieser Raum endlich oder unendlich ist, während das gewöhnliche Raumempfinden, das noch mit dem Menschlichen zusammenhängt, sich eigentlich nun wirklich um die Endlichkeit oder Unendlichkeit nicht kümmert. Es kümmert sich nicht darum. Es ist Ja auch höchst uninteressant für eine lebensvolle Weltauffassung, ob der Raum nun endlich oder unendlich vorgestellt werden kann. So daß man also sagen kann: Newton nimmt den trivialen Raum, wie er ihn findet. Aber nun fängt er an zu mathematisieren. Er hat aber schon wegen der besonderen Eigentümlichkeit des Denkens in seinem Zeitalter die abgesonderte Mathematik, auch die abgesonderte Geometrie, und indem er die räumlichen Naturerscheinungen und Naturvorgänge mit der Mathematik durchdringt, durchdringt er sie mit einer abgesonderten Mathematik. Dadurch reißt er die Naturerscheinungen selber ganz von dem Menschen los. Und wir treffen in der Tat in dieser Newtonschen Physik zum ersten Mal eigentlich vollständig vom Menschen losgerissene Naturvorstellungen. Wir brauchen nur in frühere Zeiten zurückzugehen, so werden wir finden, daß nirgends die Vorstellungen über die Natur so vom Menschen losgerissen sind, wie sie in der Newtonschen Physik losgerissen sind.
Wenn wir uns zurückwenden würden zu einem Denker - man kann diese Leute kaum Denker nennen, weil sie ein noch viel lebendigeres Innenleben haben als das bloße Gedankenleben, aber sagen wir dennoch, um den modernen Ausdruck zu gebrauchen, wir wenden uns zurück zu einem Denker des 4., 5. nachchristlichen Jahrhunderts -, so würden wir finden, daß er durchaus der Anschauung ist: Ich lebe, ich erlebe den Raum mit meinem Gotte zusammen. Ich richte mich im Raum in meinem Oben-Unten, Rechts-Links, Vorne-Hinten, aber ich lebe in dem Raum zusammen mit meinem Gotte. Der zeichnet die Richtungen hin, und ich erlebe diese Richtungen. So war es bei solch einem Denker des 3., 4. nachchristlichen Jahrhunderts und auch noch etwas später — es wird eigentlich erst im 14. Jahrhundert anders -, so daß der Mensch, indem er über den Raum dachte geometrisch, er nicht eigentlich ein Dreieck bloß hinzeichnete, sondern sich bewußt war: Das zeichnest du als Mensch, aber in dir lebt der Gott, der zeichnet mit. — Er zeichnet also zugleich sein erlebtes Qualitatives und das von Gott in ihn gesetzte Qualitative hin, so daß überall draußen, wenn Mathematik gesehen wurde, die Intentionen Gottes gesehen wurden.
Jetzt ist die Mathematik abgetrennt. Man hat vergessen, daß man die Mathematik eigentlich als von Gott eininspiriert erhalten hat. Und Newton wendet die Mathematik ganz in dieser abgesonderten Weise auf die Raumbetrachtung an. Als er seine Prinzipien der mathematischen Naturwissenschaft schreibt, geht er einfach darauf los, und wendet diese abgesonderte Mathematik, also einen konstruierten Raum, an, den er nicht definiert, weil er ein dunkles Gefühl davon hat: Wenn man anfängt den Raum zu definieren, da wird nichts daraus. - Er nimmt also den trivialen Begriff des Raumes, aber er behandelt ihn mit abgesonderter Mathematik, reißt ihn aus den inneren Erlebnissen heraus. So spricht er über die Naturprinzipien. Später vertieft sich das etwas bei Newton. Das ist interessant. Da wird -— man kann das ganz gut bemerken, wenn man bewandert ist in den Newtonschen Schriften —, da wird ihm, ich möchte sagen, nicht wohl dabei, wenn er seine eigene Raumbetrachtung ins Auge faßt. Er kann diesen vom Menschen herausgerissenen Raum, diesen ganz dem Geiste entfremdeten Raum, später nicht recht vertragen. Und da definiert er: Der Raum ist das Sensorium Gottes. Das ist ein ungeheuer interessantes Faktum, daß derjenige Mann im Ausgangspunkte der neueren Naturwissenschaft, der zuerst den Raum ganz mathematisiert, ganz abgesondert hat vom Menschen, daß der dann diesen Raum doch noch definiert als das Sensorium Gottes, also eine Art Gehirnwahrnehmungsorgan Gottes. Auseinandergerissen hatte Newton die Natur in den Raum und den Menschen, der den Raum erlebt. Auseinandergerissen hatte er es nun einmal, aber schwül wurde ihm innerlich, wenn er jetzt den ja vom Menschen losgerissenen Raum betrachtete, den der Mensch früher mit seinem Gotte zusammen erlebt hatte, so daß er sich sagen konnte: Was mein menschliches Sensorium im Raume erlebt, das erlebe ich mit meinem Gotte zusammen; schwül wurde es Newton, da er jetzt den Raum aus dem menschlichen Sensorium herausgerissen hatte. Er hatte dadurch sich selber losgerissen von dem Durchdrungensein mit dem GöttlichGeistigen. Der Raum war jetzt mit der Mathematik draußen. Und nun spricht er ihn später an als das Sensorium Gottes. Zwar hat er zuerst das Ganze herausgerissen. Dadurch ist es ungeistig und ungöttlich geworden. Aber es steckt noch so viel Empfindung in Newton, daß er den Raum, der nun draußen ist, doch nicht ungöttlich lassen kann, und so vergöttlicht er ihn wieder.
So hat sich der Mensch wissenschaftlich von seinem Gotte losgerissen, damit vom Geiste losgerissen, und äußerlich dennoch wiederum zu der Annahme dieses Geistes gegriffen. In dem, was dadurch geschehen war, liegt auch die Erklärung dafür, daß eine Persönlichkeit wie Goethe eigentlich in gar keinem Punkte mit Newton mitgehen konnte. In der Farbenlehre zeigt sich das nur an einem besonders charakteristischen Punkte. Aber diese ganze Art, das Geistige erst aus dem Menschen herauszuwerfen, es erst abzusondern vom Menschen, das widersprach dem ganzen Goetheschen Wesen. Goethe hatte von vornherein noch ein Gefühl davon, daß der Mensch alles erleben muß, auch das, was in ihm kosmisch ist, daß das Kosmische gewissermaßen selbst für die drei Dimensionen nur Fortsetzung des im Inneren des Menschen Erlebten ist. Und so war Goethe innerlichst Widersacher Newtons.
Berkeley, der ja allerdings später lebte als Newton, aber durchaus der Zeit der Kämpfe noch angehört, die sich um das Heraufkommen der naturwissenschaftlichen Denkweise abspielten, Berkeley war, wie ich sagte, mit Newtons Hereinnehmen von Ort, Raum, Zeit, Bewegung aus der Trivialanschauung zufrieden, aber im übrigen war er mit der ganzen heraufkommenden Naturwissenschaft nicht zufrieden, vor allen Dingen nicht mit der Ausdeutung der Naturerscheinungen. Denn er war sich klar darüber: Eine solche Natur, die ganz vom Menschen abgesondert ist, die kann ja eigentlich gar nicht erlebt werden. Man täuscht sich nur, wenn man meint, sie werde erlebt. — Daher machte Berkeley geltend, daß es eigentlich Körper, die außen den Sinneswahrnehmungen zugrunde liegen, gar nicht gibt, sondern daß die Wirklichkeit durch und durch geistig ist, und daß die Welt, wie sie uns erscheint, auch da, wo sie uns körperlich erscheint, eben die Offenbarung eines Allgeistigen ist. Bei Berkeley traten diese Dinge sehr stark in Form von Behauptungen auf, denn er hat eigentlich nichts mehr von der alten Mystik, noch weniger von der alten Pneumatologie. Er hat eigentlich keine Gründe, um diese Allgeistigkeit zu behaupten. Er behauptet sie mehr aus dem Dogma seiner Religion heraus, aber er behauptet sie eben, und er behauptet sie so stark, daß für ihn alles Körperliche nur eine Offenbarung des Geistigen wird. So daß es für ihn keine Möglichkeit etwa gibt, zu sagen: Da nehme ich irgendwo eine Farbe wahr, und hinter dieser Farbe ist schwingende Bewegung, die ich nicht wahrnehme -, wie es die moderne Naturanschauung ganz rechtmäßig tut, sondern Berkeley sagte sich: Irgend etwas, was auch nur irgendeine körperliche Eigenschaft hat, wie schwingende Materie, darf ich nicht als Hypothese annehmen. Dasjenige, was der physischen Erscheinungswelt zugrunde liegt, das muß ich geistig erleben, so daß hinter einer Farbwahrnehmung eben als Ursache dieser Farbenwahrnehmung Geistiges ist, das ich eben auch in mir, wenn ich mich als Geist weiß, erlebe. - Spiritualist in dem Sinne, wie das Wort innerhalb der deutschen Philosophie gebraucht wird, ist Berkeley durchaus. So daß also Berkeley eigentlich, ich möchte sagen, zwar aus dogmatischen Gründen, aber mit einem gewissen Recht, unzählige Einwendungen macht gegen die Annahme einer Natur, über die man mathematisieren dürfe mit einer Mathematik, die man losgerissen hat von dem unmittelbaren Erleben. Denn indem er den ganzen Kosmos eigentlich als geistig betrachtete, betrachtete er auch die Mathematik als etwas, was zusammen mit dem Geist des Kosmos geformt wird, gebildet wird, so daß man also eigentlich die Absichten des Kosmos-Geistes, insofern sie mathematisch gestaltet sind, erlebt, daß man aber nicht in äußerlicher Weise ein Mathematisches auf eine Körperlichkeit anwendet.
Von diesem Gesichtspunkte aus wird nun Berkeley auch Gegner desjenigen, was für Newton und gleichzeitig für Leibniz das Mathematische geworden war: der Differential- und Integralrechnung. Bitte, mißverstehen Sie mich auch in diesem Punkte nicht. Der heutige Vortrag muß innerhalb dieser Vortragsserie schon einmal so gestaltet werden, daß er an vielen Punkten, wenn man in den Anschauungen der Gegenwart drinnensteht, Angriffspunkte geben wird. Aber durch die folgenden Vorträge werden diese Angriffspunkte für denjenigen, der unbefangen sein will, schon verschwinden. Ich möchte aber gerade heute die Themen, die uns beschäftigen werden, in einer ziemlich radikalen Weise darstellen.
Berkeley wird ein Gegner der ganzen Infinitesimalrechnung, soweit sie eben damals bekannt war. Gewiß, er ist ein Gegner desjenigen, was nicht erlebbar da ist, und in dieser Beziehung hat Berkeley manchmal ein feineres Gefühl für die Dinge, als er etwa feine Gedanken hätte. Seine Gefühle, seine Empfindungen sind feiner, als es seine Gedanken sind. Er empfindet, wie das Heraufkommen der Infinitesimalrechnung zu den im Geiste erfaßbaren Größen solche hinzubringt, eben Differentiale, die eine gewisse Bestimmtheit erst in den Differentialquotienten erreichen, Differentiale, die eigentlich so konzipiert werden müssen, daß sie dem Denken gewissermaßen immer entfallen, daß das Denken sich nicht einläßt auf ihre vollständige Durchdringung. Das ist für Berkeley etwas, womit er zugleich die Wirklichkeit verliert, denn da er auf das Erlebbare hält in allem Erkennen, so kann er sich nicht entschlüpfen lassen die mathematischen Vorstellungen in das Unbestimmte der Differentiale hinein.
Was tun wir denn eigentlich, wenn wir, sagen wir, Differentialgleichungen suchen für Naturerscheinungen? Wir deuten damit überall hin auf dasjenige, was uns eigentlich im Erlebbaren entschwindet. Nun weiß ich natürlich, daß eine große Zahl der verehrten Zuhörer, indem ich dieses charakterisiere, nicht ganz mitgehen kann, aber ich kann auf der anderen Seite auch nicht die ganze Natur der Infinitesimalrechnung hier charakterisieren. Ich möchte Sie aber doch auf einiges aufmerksam machen, weil eben dieses durchaus hineinführt in eine Betrachtung der Geburt der modernen Naturwissenschaft.
Diese moderne Naturwissenschaft, indem sie den Weg gemacht hat, mit der Mathematik die Naturerscheinungen beherrschen zu wollen, aber mit einer vom Menschen abgesonderten, nicht mehr mit einer innerlich erlebten Mathematik, sie kommt eben, indem sie zu ihrer abgesonderten mathematischen Anschauung übergeht, mit ihren aus dem Menschen herausgerissenen Begriffen dazu, nur noch das Tote betrachten zu können; indem man die Mathematik aus dem Erleben herausgenommen hat, kann man die Mathematik auch nur noch auf das Tote anwenden. Es ist unmöglich, die Mathematik auf etwas anderes anzuwenden als auf das Tote, nachdem man sie aus dem Erlebbaren herausgerissen hat. Und so wird gerade durch die mathematische Betrachtungsweise die neuere Naturwissenschaft ausschließlich auf das Tote verwiesen. Aber im Weltenall äußert sich das Tote im Zerfallenden, im Sich-Atomisierenden, in dem Hineingleiten in mikroskopisch kleinste Teile, grob ausgedrückt: in dem Zerfall in Staub. Diesen Weg nimmt auch die moderne naturwissenschaftliche Anschauungsweise. Sie ergreift in einer aus dem Erlebbaren herausgerissenen Mathematik das im Kosmos Verstaubende, Sich-Atomisierende. Von diesem Zeitpunkte an beginnt auch die Möglichkeit, das Mathematische selber zu zerstäuben in Differentiale, so daß man mit jeder Art von Differentialgleichung, mit jeder differentiellen Betrachtung, wenn man damit auch das lebendigste Gebilde durchsetzen will, es in der Vorstellung tötet. Differenzieren heißt töten, und Integrieren heißt, das Tote wiederum zu einem Schema zusammenflicken, die Differentiale wiederum zu einem Ganzen zusammenfügen. Dadurch werden sie nicht lebendig, wenn man sie erst getötet hat, dadurch bekommt man nur tote Gespenster, nichts Lebendes mehr.
So etwa erschien Berkeley die ganze Perspektive, was da werden sollte durch die Infinitesimalrechnung. Hätte er sich konkret anschaulich ausgesprochen, so hätte er wohl gesagt: Ihr tötet erst die ganze Welt, indem ihr sie differenziert, dann fügt ihr wiederum ihre Differentiale zusammen in Integralen, habt aber keine Welt mehr, sondern nur das Nachbild einer Welt, die Illusion einer Welt. — Jedes Integral ist eigentlich eine Illusion in bezug auf seinen Inhalt - das hat Berkeley schon gefühlt -, so daß eigentlich Differenzieren Töten heißt und Integrieren das Zusammensuchen der Knochen und des Staubes, um aus den getöteten Wesen die alten Gestalten wiederum zusammenzufügen, wodurch sie aber nicht lebendig werden, sondern eben tote Schemata sind. Man kann sagen, solch eine Empfindung bei Berkeley war unzeitgemäß. Das war sie auch ganz sicher, denn die Anschauungsweise, die so vorgeht, mußte kommen, und derjenige, der etwa sagen wollte, es hätte keine Infinitesimalrechnung kommen sollen, der wäre natürlich nicht ein wissenschaftlicher Denker, sondern einNarr. Aber auf der anderen Seite muß man sich auch wiederum klar sein, daß im Ausgangspunkte dieser ganzen Weltenströmung dennoch so etwas begreiflich ist wie die Empfindung des Berkeley. Ihn schauderte vor dem, was er ahnte aus dem Heraufkommen der Infinitesimalbetrachtung der Natur, die nicht mehr Betrachtung dessen war, was früher als Natur galt, was mit Geborenwerden zusammenhing, sondern Betrachtung desjenigen, was immer in der Natur erstirbt.
Das hatte man ja früher gar nicht einmal betrachtet, das hatte einen gar nicht interessiert. Früher hat man das Werdende, das Sprossende betrachtet; jetzt betrachtet man das Welkende und das zuletzt Zerstäubende. Jetzt arbeitet die Anschauung auf den Atomismus hin. Vorher hatte sie nach dem Kontinuierlichen in den Wesen getrachtet. Da natürlich das Lebendige in der Welt, die uns zunächst gegeben ist, nicht ohne Sterben sein kann, denn das Lebendige muß sterben, so müssen wir auch in der Welt das Tote finden, müssen das Tote auch begreifen. Das heißt, es mußte eine Wissenschaft vom Toten kommen. Sie war schon notwendig. Und das Zeitalter, von dem wir hier reden, das ist eben das Zeitalter, in dem die Menschheit reif war für die Betrachtung dieses Toten. Aber man muß sich eben vorstellen, wie es einem gegen alle Empfindung ging, der wie Berkeley noch ganz im Alten lebte.
Nun stehen wir ja heute durchaus noch in den Nachwirkungen desjenigen, was dazumal geboren worden ist, drinnen. Wir haben geradezu die Triumphe desjenigen naturwissenschaftlichen Arbeitens erlebt, vor dem so jemandem wie Berkeley geschaudert hat. Wir haben die Triumphe erlebt; bis in der modernen Relativitätstheorie die Newtonschen Vorstellungen etwas modifiziert worden sind, haben wir die Alleinherrschaft dieser Newtonschen Vorstellungen erlebt. Denn die Goethesche Reaktion gegen diese ist ja eigentlich nicht aufgekommen, und man muß, um richtig zu verstehen, was da heraufgekommen ist, eben doch auch zu den Ausgangspunkten zurückschauen und bemerken, wie den Geistern, die noch ein lebendiges Empfinden hatten von dem Früheren, doch schauderte, oder wie sie andere Empfindungen, die den älteren ähnlich sind, noch aufrechterhielten.
Giordano Bruno schaudert davor, das Tote, das jetzt betrachtet werden soll, wirklich als Totes zu betrachten mit rein mathematischer Anschauungsweise. Er belebt die Atome zu Monaden, er poetisiert die mathematische Anschauungsweise, um sie im Persönlichen zu halten. Newton geht ganz mathematisch vor im Beginn. Dann wird ihm schwül, möchte ich sagen, und indem er erst den Raum gänzlich mit der äußeren Mathematik aus dem Menschen herausgerissen hat, macht er ihn zum Sensorium Gottes. Berkeley lehnt die ganze Anschauungsweise, die da heraufkommt, ab, und er lehnt damit als ein radikaler Geist zugleich die ganze Tendenz des Infinitesimalen ab.
Wir stehen aber heute drinnen in demjenigen, was Giordano Bruno erst poetisierend schildern wollte, in demjenigen, bei dem Newton selber etwas unbehaglich geworden ist, in dem darinnen, was Berkeley ganz abgelehnt hat. Nehmen wir etwa, wenn wir naturwissenschaftlich im heutigen Sinne denken, ernst, was Newton gesagt hat, der Raum sei ein Sensorium Gottes? So gestattet man sich ja heute immer, daß man die Geister, bei denen man das oder jenes festhalten will, eben als große Geister betrachtet, aber wenn einem bei ihnen etwas nicht paßt, nun, da fühlt man sich ungeheuer erhaben darüber und denkt: Nun ja, in diesem Punkte, da war er halt noch nicht so gescheit wie ich selber. So machen es ja auch diejenigen, die Lessing für eine außerordentlich geniale Persönlichkeit halten, aber mit einer gewissen Nachsicht nachher das betrachten, daß er am Ende seines Lebens die wiederholten Erdenleben des Menschen zu seiner Überzeugung gemacht hat.
Gerade aber, weil wir in der Gegenwart gar nicht anders können, als uns auseinanderzusetzen mit den Vorstellungen, die da heraufgekommen sind, müssen wir zu ihrem Ausgangspunkte zurück. Denn es handelt sich wirklich darum, nachdem nun einmal die Mathematik aus dem Menschen herausgerissen worden ist und die Natur durch diese herausgerissene Mathematik ergriffen worden ist, daß allmählich die ganze Natur vom Menschen abgesondert wurde, es handelt sich darum, daß wir wieder damit zurechtkommen, uns in dieser Natur zu finden, in irgendeiner Art zu finden. Denn eher kommen wir nicht zu einer widerspruchslosen Erfassung des Geistigen, ehe wir nicht wiederum auch den Geist in der Natur gefunden haben. Und so wie es selbstverständlich ist, daß der lebende Mensch als physischer Erdenmensch einmal ein Toter wird, ebenso war es selbstverständlich, daß einmal in der Menschheitsentwickelung aus der früheren lebendigen Betrachtung eine Betrachtung des Toten eintreten mußte. Und nicht derjenige kann gewisse Dinge, die man eben nur am Leichnam erkennen kann, erkennen, der den Leichnam nicht untersuchen will, sondern nur derjenige, der ihn untersucht. Und so können gewisse Weltengeheimnisse nur gefunden werden, wenn man die naturwissenschaftliche Denkweise der neueren Zeit ernst zu nehmen vermag.
Gestatten Sie mir am Schlusse eine halb persönliche Bemerkung. Aus dem Grunde, weil diese naturwissenschaftliche Betrachtungsweise der neueren Zeit ernst zu nehmen ist, war ich niemals ein Gegner dieser Denkweise, sondern betrachte sie als etwas, was notwendig in unsere Zeit hereingehört. Aber oftmals habe ich mich gerade gegen dasjenige aussprechen müssen, was der oder jener Wissenschafter oder sogenannte Wissenschafter aus dem gemacht hat, was sich ergeben kann, wenn man in der richtigen Weise das betrachtet, was hat gefunden werden können dadurch, daß man an das Tote vorurteilslos heranging. Man hat das so Gefundene aber dann mißdeutet. Gegen solche Mißdeutungen des Naturwissenschaftlichen habe ich mich gewendet. Und ich möchte es gerade bei dieser Gelegenheit scharf betonen, daß ich durchaus nicht als ein Gegner irgendwie der naturwissenschaftlichen Richtung aufgefaßt werden möchte, und daß ich es als abträglich dem ganzen anthroposophischen Streben empfinden würde, wenn ein unrichtiger Gegensatz eintreten würde zwischen dem, was Anthroposophie auf dem Geisteswege sucht, und demjenigen, was Naturwissenschaft aus dem Geiste der neueren Zeit heraus, wenn ich hier das Wort Geist anwenden darf, auf ihrem Gebiet notwendig suchen muß.
Ich erwähne dieses ausdrücklich, meine sehr verehrten Anwesenden und lieben Freunde, weil innerhalb unserer anthroposophischen Bewegung eine gesunde Auseinandersetzung unbedingt Platz greifen muß über die Beziehung von Anthroposophie und Naturwissenschaft. Alles dasjenige, was in dieser Beziehung fehl geht, kann der Anthroposophie nur in sehr erheblichem Maße schaden. Das sollte eigentlich vermieden werden. Ich muß das hier erwähnen, weil doch in der letzten Zeit, wie ich in der Vorbereitung für diese Vorträge gesehen habe, in der anthroposophischen Zeitschrift «Die Drei» der Atomismusstreit auf ein vollständig totes Geleise getrieben worden ist, von dem er wiederum wegkommen muß. Denn wir kommen nicht weiter, wenn wir in dieser Weise fortfahren, die Dinge alle auf ein totes Geleise zu bringen. Deshalb, meine sehr verehrten Anwesenden und lieben Freunde, möchte ich auch gar nicht zurückhalten damit, sondern es ganz dezidiert aussprechen, daß ich die Polemik in der «Drei» hin und her über den Atomismus als etwas auffassen muß, wodurch die ganze Beziehung von Anthroposophie und Naturwissenschaft tendiert, auf ein totes Geleise gebracht zu werden. Meine Aufgabe ist es, die Anthroposophie am Leben zu erhalten, und ich würde auch jederzeit, wenn ich selbst allein stehen müßte, für dieses Leben und nicht für das Bringen auf tote Geleise in der Anthroposophie eintreten müssen. Deshalb darf ich auch nicht zurückhaltend sein, wo sich mir dergleichen Aperçus aufdrängen, und deshalb werde ich auch versuchen, gerade in diesen Vorträgen dasjenige, was schon wiederum droht, auf ein totes Geleise gebracht zu werden, ins Leben einzuführen, nämlich die Betrachtungen über die Beziehungen von Anthroposophie und naturwissenschaftlicher Denkweise. - Davon dann morgen weiter.
Fourth Lecture
Yesterday I attempted to show how an older human view, from which modern scientific thinking emerged, still connected the qualitative and, I would say, also the figurative aspects of mathematics, including geometry, insofar as it is mathematics, and thus still connected the quantitative with the qualitative. So that we can look back on a worldview in which experience was not just, say, a triangle or some other geometric structure, regardless of whether this geometric structure meant a physical boundary or, for example, the shape of a body's trajectory, but rather saw such a geometric structure and also an arithmetic structure as being intimately connected with something that was also intensely experienced qualitatively, for example, a triangle emerging from a particular experience, a quadrangle emerging from a particular experience.
This view could only be transformed into another when we lost the awareness that everything quantitative, including everything mathematical, is originally experienced directly by human beings in connection with the world, when we came to detach the quantitative from human experience. And we can observe this separation very clearly where every conception of space as something in which human beings themselves are located is replaced by the schematic conception of space that is common today, where the starting point is taken from any arbitrary location through which the three coordinate axes are simply drawn. Mathematics in the form we have today, and the way we use it to try to control so-called natural phenomena, only came into being in this form after it had been separated from the human realm. If I wanted to express myself more clearly, I would have to say: In an earlier time, humans perceived mathematics as something they experienced within themselves together with their gods or with their God, through whom God ordered the world, and in relation to which it was no wonder that they now found the world in this order. In contrast, relating a completely arbitrary spatial scheme or some other mathematical concept to natural phenomena, even though it can be identified with something essential in these so-called natural phenomena, this relating of the abstract-mathematical to natural phenomena is something that cannot be connected in any fixed way with human experience and therefore cannot, in essence, be understood, but at most stated. Therefore, it cannot really be the object of knowledge. One can really only say of this application of mathematics to natural phenomena that one finds that what one has first conceived mathematically then fits the natural phenomena. But why this is so cannot be found within this world of perception.
Let us think back to the world of perception I have been talking to you about these past few days, where everything physical was considered a representation of the spiritual. One looked at the body and found in it a representation of the spiritual. One then looked back at oneself, at what one finds in conjunction with one's divine nature as mathematics through one's own physical constitution. And just as one finds the imprint of an artist's ideas in his work of art without encountering anything that is not transparent, so one finds in the bodies the mathematical images of what one has experienced together with one's divine nature, because these bodies out there in nature are themselves images of the divine-spiritual. Thus, at the very moment when mathematics is separated from the human being and then related to a physicality that is no longer an image of the spirit, something agnostic necessarily enters into the whole conception.Let us consider the matter in concrete terms, in the first manifestation that confronts us after the birth of the scientific way of thinking; let us consider the matter in the Copernican system. I am not concerned here today, nor in these lectures in general, with defending the old Ptolemaic system or defending the Copernican system. I am not taking sides here, merely presenting the historical facts; I am only concerned with the fact that the Copernican system replaced the Ptolemaic system. No one should therefore conclude from what I have to say today that I wish to defend the old Ptolemaic system against the Copernican system. But with regard to historical development, the following must be said. Let us transport ourselves back to the time when human beings experienced their own orientation in space, up and down, right and left, front and back. They could only experience this in connection with the Earth. For example, they could only experience up and down in relation to themselves in connection with the direction of gravity. And they experienced right and left, front and back in connection with the regions of the world, to which the earth itself is oriented. But they also experienced this orientation together with the earth, in that they felt firmly standing on the earth. This means that human beings were not just something that began at their heads and ended at their feet for the purposes of their thoughts, but rather they experienced themselves as something through which gravity passed, something that had something to do with their being, but which did not end at the soles of their shoes, so that, feeling themselves to be inside the gravitational being, they felt themselves to be part of the earth. This gave his concrete experience the starting point for his entire cosmic view through the Earth. This, however, justified the construction of the Ptolemaic world system for him. The moment man detached the mathematical construction from himself, it became possible to detach it from the earth and establish an astronomical system with its center in the sun. Man first had to lose his older experience of being within himself in order to accept the center of a system outside the earth. The emergence of the Copernican system is therefore intimately connected with the entire transformation of the mood of civilized humanity. The emergence of modern scientific thinking cannot be separated from the general state of mind and soul of human beings, but must be viewed in connection with it.
It is quite natural that when such things are said, they initially appear absurd to contemporaries who believe in the current view of nature with a much greater intensity than ancient religious believers ever believed in their dogmas. But in order to be able to appreciate the scientific way of thinking correctly—which, as we shall see in the course of these lectures, makes it more valuable for understanding the world than agnostics believe—one must take it out of the totality of the human soul and its development.
So once upon a time there was this Copernican worldview, this shifting of the cosmic center from the Earth to the Sun. And with that, the entire cosmic edifice of thought of Giordano Bruno, who was born in 1548 and burned at the stake in Rome in 1600, was essentially already in place. Giordano Bruno appears, one might say, as the glorifier of the modern view of nature, of Copernicanism. One must be thoroughly imbued with an understanding of the necessity of the emergence of this worldview in order to feel anything at all for the whole manner, and especially for the diction and tone, with which Giordano Bruno speaks and writes. One must note that Giordano Bruno speaks in his writings in a completely different way than both the followers of the new scientific way of representation and the laggards of the old, previously common way. One might say that Giordano Bruno does not actually speak mathematically at all, but rather lyrically about the universe. One might find something musical in the way Giordano Bruno often captivates his readers by putting the modern view of nature into words. Why is that? It is because Giordano Bruno is in fact rooted with his whole inner being in an older worldview and says to himself with his outer mind: Since things have turned out this way in the development of humanity, we have no choice but to accept the Copernican worldview. He understood the necessity that was given to humanity by the development of time. But, I would like to say, this Copernican worldview did not actually come to him as something he had worked out for himself, but as something that was given to him, something he found to be appropriate for his contemporaries. But he could not do otherwise, because his inner worldview belonged to an older world than the one he was supposed to recognize, the one he was supposed to accept as knowledge, to experience inwardly. He still had the inner experience. He did not yet have the scientific forms of this inner experience. And so he actually follows the lines of thought of the Copernican system, which he presents so wonderfully, not as Copernicus did, as Galileo or Kepler or others did, or even Newton, but he followed them in such a way that he tried, in the old way, where one experienced the whole cosmos within oneself, to experience this now as well. But in order to experience the cosmos in the old way, mathematics had to be mysticism at the same time, as I explained yesterday; it had to be an inner experience. For Giordano Bruno, this was no longer possible. That time was over. And so experiencing it did not actually become a knowing experience, it became a poetic experience, or at least a semi-poetic experience. This gives Giordano's writings their diction. Atomism is still a monadology; the atom is still something living for him. The sum of the cosmic laws still has something soulful about it, but not because he, in the sense of an ancient mystic, had truly experienced the soulful in the smallest details or had experienced the mathematical laws of the cosmos as the intention of the spirit, but because he poetically roused himself to capture that which, once it had become external, could only be given externally, in order to admire it and glorify it in admiration in a scientific manner. There is really something in this personality of Giordano Bruno that is like a cornerstone of the two worldviews, the present one and the one that people today can hardly conceive of, which goes back to the 15th century and in which, in a certain sense, everything that is human is experienced cosmic, so that humans did not yet distinguish between the subject within them and the cosmic object outside, that both actually still came together, that humans did not yet speak of the three spatial dimensions, separate from their own orientation in their own bodies, up-down, right-left, front-back.
With Copernicus, it was initially the astronomical that he now tried to grasp with the separately conceived mathematical. With Newton, mathematics — I do not mean individual mathematical derivations, but mathematical thinking in general, but in separation from human experience — now appears entirely on its own. Newton is actually—certainly, one must always describe radical points in general terms, and much can be objected to what I am describing here in broad strokes, but that is beside the point—Newton is pretty much the first to approach natural phenomena with a separate mathematical way of thinking. And this makes Newton, as a kind of successor to Copernicus, the actual founder of the modern scientific way of thinking.
Now it is interesting to see how, in Newton's time and in the period that followed, civilized humanity was preoccupied with coming to terms with the tremendous upheaval that took place in the soul, from the older mathematical-mystical view to the newer mathematical-scientific view. The minds actually have a hard time coping with this tremendous upheaval. This becomes particularly clear when one looks into the details, into the tasks with which one personality or another is struggling. Take Newton, for example, who presents his natural system by trying to relate it to mathematics, which is separate from human beings. We find that he presupposes, for example, time, place, space, and motion. In his principles of natural philosophy, he says: I do not need to explain place, time, space, and motion, because every human being actually knows them. Every human being knows what time is, what space is, what place is, what motion is, and so I use the concepts of space, time, place, and motion within the mathematical explanation of the world just as I take them from the trivial, popular way of looking at things. It is not always the case that people fully comprehend what they say with their consciousness. In fact, it is extremely rare in life for a person to truly penetrate with their consciousness everything that they express. This is not even the case with the greatest minds. And Newton does not really know why he takes place, time, space, and movements as his starting points and does not explain them in any way, does not define them in any way, while in all his subsequent deductions he certainly seeks to explain everything, to define everything. Why is that? Well, it is for the reason that all intelligence and all thinking are of no help to us when it comes to place, time, movement, and space. For all thinking about place, time, space, and movement never makes us any more intelligent than we are from the beginning, when we absorb these concepts, these mental images, in our ordinary experience. The mental images are such that one experiences them through one's immediate, I would say trivial, humanity and must retain them as one has them. A successor to Newton, who was admittedly more active in the field of philosophy but who is extremely characteristic of the struggles during the emergence of the scientific way of thinking, one of Newton's successors, Berkeley, noticed this particularly. He is otherwise dissatisfied with Newton, as we shall hear, but he was particularly struck by the fact that Newton takes these concepts as his basis without explaining them, that he says: I start from place, time, space, motion, do not define them, but take them as the basis of my mathematical and scientific considerations. Berkeley said: That is how one must do it. One must take these concepts as they are understood by the simplest person, because there they are always clear. The concepts of place, time, movement, and space do not become unclear in our experience, but rather in the minds of metaphysicians and philosophers. If you find these four concepts in life, they are clear — according to Berkeley — but if you find them in the minds of metaphysicians and philosophers, they are always unclear.
And it is indeed the case that thinking about these concepts, which need to be experienced, does not help. One can sense that. That is why Newton only begins to juggle mathematically when he needs these concepts to explain the world. Then he juggles with these concepts. I don't mean to say anything derogatory by this, but only to characterize Newton's lively skill, so to speak. One of the concepts Newton uses in this way is space. He really manipulates space in the same way that — well, let's use the philistine expression — the common man imagines space. And there is still something of the experience in there. For if you try to imagine the space of Cartesian mathematics, unless you delude yourself, you end up thinking in a kind of whirlpool, a kind of vertigo, because this space, which has its center anywhere, its coordinate origin, this space has something so indeterminate about it. For example, one can speculate in the most ingenious way, without coming up with anything, about whether this space is finite or infinite, while the ordinary sense of space, which is still connected to the human, does not really care about finiteness or infinity. It does not concern itself with it. It is also highly uninteresting for a lively worldview whether space can be imagined as finite or infinite. So one can say: Newton takes trivial space as he finds it. But now he begins to mathematize. However, due to the peculiarity of thinking in his age, he already has separate mathematics, including separate geometry, and by permeating spatial natural phenomena and natural processes with mathematics, he permeates them with a separate mathematics. In doing so, he completely detaches natural phenomena from humans. And indeed, in Newtonian physics we encounter for the first time mental images of nature that are completely detached from human beings. We need only go back to earlier times to find that nowhere are ideas about nature so detached from human beings as they are in Newtonian physics.
If we were to turn back to a thinker — one can hardly call these people thinkers, because they have a much more vivid inner life than mere thought life, but let us nevertheless use the modern expression and say that we turn back to a thinker of the 4th or 5th century AD — we would find that he is entirely of the view that I live, I experience space together with my God. I orient myself in space in my up-down, right-left, front-back, but I live in space together with my God. He draws the directions, and I experience these directions. This was the case with such a thinker of the 3rd and 4th centuries AD and even somewhat later — it was not until the 14th century that things changed — so that when man thought geometrically about space, he did not merely draw a triangle, but was aware that he was drawing it as a human being, but that God was living within him and drawing with him. — So he draws both his experienced qualities and the qualities placed in him by God, so that everywhere outside, when mathematics was seen, the intentions of God were seen.
Now mathematics is separated. People have forgotten that mathematics was actually received as inspired by God. And Newton applies mathematics entirely in this separate way to the consideration of space. When he writes his principles of mathematical natural science, he simply goes ahead and applies this separate mathematics, that is, a constructed space, which he does not define because he has a vague feeling about it: if you start to define space, nothing comes of it. So he takes the trivial concept of space, but treats it with separate mathematics, tearing it out of inner experiences. This is how he talks about the principles of nature. Later, this deepens somewhat with Newton. That is interesting. There—you can see this quite clearly if you are well versed in Newton's writings—there, I would say, he feels uncomfortable when he considers his own view of space. Later, he cannot quite tolerate this space torn out of man, this space completely alienated from the spirit. And so he defines: Space is the sensorium of God. It is an immensely interesting fact that the man who stood at the beginning of modern natural science, who first completely mathematized space, completely separated it from man, then nevertheless defined this space as the sensorium of God, that is, a kind of brain organ of perception for God. Newton had torn nature apart into space and the human being who experiences space. He had torn it apart, but he felt uneasy when he now looked at the space that had been torn away from man, which man had previously experienced together with his God, so that he could say to himself: What my human sense organ experiences in space, I experience together with my God; Newton felt uneasy because he had now torn space out of the human sense organ. In doing so, he had torn himself away from being permeated by the divine-spiritual. Space was now outside with mathematics. And now he later addresses it as the sensorium of God. Admittedly, he first tore the whole thing out. This made it unspiritual and ungodly. But there is still so much feeling in Newton that he cannot leave the space that is now outside ungodly, and so he deifies it again.
In this way, man has scientifically torn himself away from his God, and thus torn himself away from the spirit, and yet outwardly he has again resorted to the assumption of this spirit. What has happened here also explains why a personality such as Goethe could not agree with Newton on any point. In the theory of colors, this is evident in one particularly characteristic point. But this whole way of first throwing the spiritual out of man, of first separating it from man, contradicted Goethe's entire being. Goethe had from the outset a feeling that man must experience everything, even that which is cosmic within him, that the cosmic is, in a sense, only a continuation of what is experienced within man, even in the three dimensions. And so Goethe was Newton's innermost adversary.Berkeley, who admittedly lived later than Newton, but still belonged to the era of struggles surrounding the emergence of the scientific way of thinking, Berkeley, as I said, was satisfied with Newton's removal of place, space, time, and motion from trivial observation, but he was not satisfied with the whole emerging natural science, especially not with the interpretation of natural phenomena. For he was clear about this: such a nature, which is completely separate from man, cannot actually be experienced. One is only deceiving oneself if one thinks that it can be experienced. Berkeley therefore asserted that bodies that underlie sensory perceptions do not actually exist, but that reality is thoroughly spiritual, and that the world as it appears to us, even where it appears physical, is the revelation of a universal spirit. In Berkeley, these things appeared very strongly in the form of assertions, because he actually has nothing left of the old mysticism, and even less of the old pneumatology. He actually has no reasons for asserting this universal spirituality. He asserts it more out of the dogma of his religion, but he asserts it, and he asserts it so strongly that for him everything physical becomes only a revelation of the spiritual. So that for him there is no possibility of saying, for example, that he perceives a color somewhere and that behind this color there is a vibrating movement that he does not perceive—as the modern view of nature quite rightly does—but Berkeley said to himself: I cannot accept as a hypothesis anything that has even the slightest physical property, such as vibrating matter. That which underlies the physical world of appearances must be experienced spiritually, so that behind the perception of color there is, as the cause of this perception of color, something spiritual which I also experience within myself when I know myself to be spirit. Berkeley is definitely a spiritualist in the sense that the word is used in German philosophy. So Berkeley actually, I would say, for dogmatic reasons, but with a certain right, raises countless objections to the assumption of a nature that can be mathematized with a mathematics that has been torn away from immediate experience. For by considering the entire cosmos as spiritual, he also considered mathematics as something that is formed and shaped together with the spirit of the cosmos, so that one actually experiences the intentions of the spirit of the cosmos, insofar as they are mathematically structured, but does not apply mathematics to physicality in an external way.
From this point of view, Berkeley also becomes an opponent of what had become mathematics for Newton and Leibniz: differential and integral calculus. Please do not misunderstand me on this point either. Today's lecture, within this series of lectures, must be structured in such a way that it will give rise to points of attack in many places if one is familiar with contemporary views. But in the following lectures, these points of attack will disappear for those who wish to remain unbiased. Today, however, I would like to present the topics that will occupy us in a rather radical manner.
Berkeley is an opponent of the entire infinitesimal calculus, as it was known at the time. Certainly, he is an opponent of that which cannot be experienced, and in this respect Berkeley sometimes has a finer sense of things than he has fine thoughts. His feelings, his perceptions are finer than his thoughts. He feels that the emergence of infinitesimal calculus brings to the mentally comprehensible quantities such quantities as differentials, which only attain a certain determinacy in the differential quotients, differentials which must actually be conceived in such a way that they are, as it were, always omitted from thinking, that thinking does not allow itself to be completely penetrated by them. For Berkeley, this is something that causes him to lose sight of reality, because since he insists on the experiential in all cognition, he cannot allow the mathematical mental images to slip into the indeterminacy of the differentials.
What are we actually doing when we seek differential equations for natural phenomena, for example? We are pointing everywhere to that which actually disappears from our experience. Now, of course, I know that many of my esteemed listeners cannot quite follow me when I characterize it in this way, but on the other hand, I cannot characterize the whole nature of infinitesimal calculus here. However, I would like to draw your attention to a few things, because this leads us to a consideration of the birth of modern natural science.
This modern natural science, in seeking to master natural phenomena through mathematics, but with a mathematics that is separate from man and no longer experienced internally, has, in passing over to its separate mathematical view, with its concepts torn from man, come to be able to contemplate only the dead; by removing mathematics from experience, one can only apply mathematics to the dead. It is impossible to apply mathematics to anything other than the dead after tearing it away from experience. And so it is precisely through the mathematical approach that modern natural science is relegated exclusively to the dead. But in the universe, the dead expresses itself in decay, in atomization, in sliding into microscopically small parts, roughly speaking: in disintegration into dust. This is also the path taken by the modern scientific view. It seizes upon the atomization and disintegration of the cosmos in a mathematics torn from experience. From this point on, it also becomes possible to break down mathematics itself into differentials, so that with every kind of differential equation, with every differential consideration, even if one wants to apply it to the most living of structures, one kills it in the mental image. Differentiating means killing, and integrating means patching the dead back together into a scheme, putting the differentials back together into a whole. This does not bring them to life once they have been killed; it only produces dead ghosts, nothing living anymore.
This is roughly how Berkeley saw the whole perspective of what was to come with infinitesimal calculus. If he had expressed himself concretely and vividly, he would probably have said: First you kill the whole world by differentiating it, then you put its differentials back together in integrals, but you no longer have a world, only the afterimage of a world, the illusion of a world. — Every integral is actually an illusion in relation to its content — Berkeley already sensed this — so that differentiation actually means killing, and integration means gathering the bones and dust to reassemble the old forms of the killed beings, which, however, do not come to life, but are merely dead schemata. One could say that such a feeling on Berkeley's part was out of step with the times. It certainly was, because the way of looking at things that proceeds in this way had to come, and anyone who wanted to say that infinitesimal calculus should not have come into being would naturally not be a scientific thinker, but a fool. But on the other hand, one must also be clear that at the starting point of this whole world trend, something like Berkeley's feeling is nevertheless understandable. He shuddered at what he sensed from the emergence of the infinitesimal view of nature, which was no longer a view of what had previously been considered nature, which was connected with being born, but a view of what always dies in nature.
This had not even been considered before; it had not interested anyone. In the past, people looked at what was becoming, what was sprouting; now they look at what is withering and ultimately disintegrating. Now, perception is working toward atomism. Previously, it had sought continuity in beings. Since, of course, living things in the world that is initially given to us cannot exist without dying, for living things must die, we must also find death in the world and must also understand death. This means that a science of death had to emerge. It was already necessary. And the age we are talking about here is precisely the age in which humanity was ripe for the contemplation of this dead. But one must imagine how it felt to someone like Berkeley, who still lived entirely in the old ways.
Now we are still very much in the aftermath of what was born back then. We have experienced the triumphs of scientific work that made someone like Berkeley shudder. We have experienced these triumphs; until Newton's ideas were modified somewhat in the modern theory of relativity, we experienced the sole reign of these Newtonian ideas. For Goethe's reaction against them did not really arise, and in order to understand correctly what came up, one must look back to the starting points and notice how the minds that still had a living sense of the past shuddered, or how they still maintained other feelings similar to the older ones..
Giordano Bruno shudders at the thought of really viewing the dead, which is now to be considered, as dead with a purely mathematical view. He animates atoms into monads, he poeticizes the mathematical view in order to keep it personal. Newton proceeds entirely mathematically at the beginning. Then he becomes confused, I would say, and having first completely torn space out of man with external mathematics, he makes it into God's sensorium. Berkeley rejects the entire way of looking at things that emerges here, and as a radical mind he rejects at the same time the entire tendency toward the infinitesimal.
But today we find ourselves in the very situation that Giordano Bruno sought to describe poetically, in the situation that made Newton himself somewhat uncomfortable, in the very situation that Berkeley rejected entirely. If we think scientifically in today's sense, can we take seriously what Newton said, that space is God's sensorium? Today, we always allow ourselves to regard the minds in which we want to hold on to this or that as great minds, but when something about them does not suit us, well, then we feel tremendously superior and think: Well, on this point, he was not as clever as I am. This is also what those who consider Lessing an extraordinarily brilliant personality do, but with a certain indulgence afterwards, considering that at the end of his life he made the repeated earthly lives of human beings his conviction.
But precisely because we cannot do anything else in the present but deal with the mental images that have arisen, we must return to their starting point. For now that mathematics has been torn out of human beings and nature has been seized by this torn-out mathematics, the whole of nature has gradually been separated from human beings, and it is a matter of our coming to terms with finding ourselves in this nature, in some way or other. For we cannot arrive at an uncontradictory understanding of the spiritual until we have found the spirit in nature again. And just as it is self-evident that the living human being, as a physical human being on earth, will one day die, so it was self-evident that at some point in human evolution, the earlier living contemplation of nature would give way to a contemplation of the dead. And it is not those who do not want to examine the corpse who can recognize certain things that can only be recognized in the corpse, but only those who examine it. And so certain secrets of the world can only be found if one is able to take the scientific way of thinking of modern times seriously.
Allow me to conclude with a semi-personal remark. Because this modern scientific way of thinking must be taken seriously, I have never been an opponent of it, but regard it as something that is necessary in our time. But I have often had to speak out against what this or that scientist or so-called scientist has made of what can result when one looks in the right way at what has been found by approaching the dead without prejudice. But then what has been found has been misinterpreted. I have turned against such misinterpretations of natural science. And I would like to emphasize sharply on this occasion that I do not wish to be understood as an opponent of the natural scientific direction in any way, and that I would consider it detrimental to the whole anthroposophical endeavor if an incorrect opposition were to arise between what anthroposophy seeks on the spiritual path and what natural science, out of the spirit of the modern age, if I may use the word spirit here, must necessarily seek in its field.
I mention this expressly, my dear friends and distinguished audience, because within our anthroposophical movement there must be a healthy debate about the relationship between anthroposophy and natural science. Anything that goes wrong in this relationship can only harm anthroposophy to a very considerable degree. This should actually be avoided. I must mention this here because, as I have seen in preparing for these lectures, the atomism controversy has recently been driven into a completely dead end in the anthroposophical magazine Die Drei, from which it must now find a way out. For we will not make any progress if we continue in this way, driving everything into a dead end. Therefore, my dear friends and distinguished audience, I do not wish to hold back, but rather to state quite clearly that I must regard the polemic in Die Drei about atomism as something that tends to bring the entire relationship between anthroposophy and natural science to a dead end. My task is to keep anthroposophy alive, and I would always, even if I had to stand alone, have to stand up for this life and not for bringing anthroposophy to a dead end. That is why I cannot be reticent when such insights impose themselves on me, and why I will try, especially in these lectures, to bring to life what is once again in danger of being led onto a dead track, namely, the consideration of the relationship between anthroposophy and scientific thinking. I will continue with this tomorrow.